Rinkos sentimentų prognozavimas naudojant dirbtinį intelektą
DOI:
https://doi.org/10.3846/vvf.2020.031Keywords:
investuotojo elgsena, rinkos sentimentai, dirbtinis intelektas, giliojo mokymosi metodas, prognozavimas, ilgos trumpalaikės atminties tinklaiAbstract
Kiekvienas investuotojas susiduria su efektyvių investicinių sprendimų priėmimo problema. Yra daug metodų, kuriais stengiamasi išanalizuoti finansų rinkoje vykstančių pokyčių priežastis bei remiantis tokia informacija numatyti ateities tendencijas. Vienas iš būdų yra investuotojų sentimentų prognozavimas. Šio straipsnio tyrimo tikslas yra atlikti skirtingų investuotojų sentimentų prognozavimą ir įvertinti prognozavimui naudojamo modelio patikimumą, t. y. siekiama atrasti patikimą sentimentų prognozavimo algoritmą. Tyrimui naudojamas dirbtinio intelekto giliojo mokymosi ilgos trumpalaikės atminties (LSTM) tinklų algoritmas bei grafinis gautų rezultatų vaizdavimas. Atlikus tyrimą buvo pastebėta, kad kiekvienu sentimentų prognozavimo atveju gauta paklaida (RMSE) buvo labai maža, o tai reiškia, kad prognozavimui naudojamas algoritmas yra labai patikimas. Sentimentų prognozavimas kartu su racionaliais prognozavimo metodais gali papildyti prekybos strategiją ar paramos sistemą investuotojui.
Downloads
Published
Conference Event
Section
Copyright and Distribution Agreement
License

This work is licensed under a Creative Commons Attribution 4.0 International License.